
© 2017 Silexica, Inc. All Rights Reserved© 2018 Silexica GmbH. All rights reserved worldwide.

ANALYZE CODE
Dynamic code analysis is the foundation for a complete understanding of the software flow and
interdependencies. Static analysis provides visibility into the code structure and static call trees; but
alone fails to provide all the insights needed for code development on complex software with origins that
include in-house, commercial, legacy, and open source. The problem is made more challenging for software
developers as 3rd party modules are often delivered without source code to review. To meet the hurdles
encountered of software development and optimization for multicore SoCs, SLX technology combines static
analysis with dynamic analysis to provide the complete picture of software interdependencies.

Optimizing C/C++ applications on complex multicore SoCs requires a complete understanding of the software
and hardware. Developers are challenged with the task of optimizing sequential and parallel code for multicore
SoCs that comprise a variety of compute engines. For the most efficient utilization of CPUs, DSPs and FPGAs,
understanding the code structure and interdependencies between applications, tasks and variables is required
for streamlined software development, refactoring and software design.

SLX enables the development and optimization of C/C++ applications for heterogeneous multicore platforms
with unparalleled insights into the hardware and software interdependencies. This allows for code architecting
to achieve the most optimal performance for a specific code on a particular multicore SoC. SLX blends
hardware insights (including the target's processing micro-architecture, resource utilization, and memory and
communication latencies) with software flow to give deep insights into execution.

FEATURES AND CAPABILITIES

AN
AL

YZ
E

Static and Dynamic
Source Code Analysis

Data and Control
Dependencies

Cross-Target
Performance Estimation

Call-graph and
Variable Access

SLX can be used early in the design cycle ahead of source code with software models executed on host-
based SoC system models. For cross embedded software developers, SLX combines static analysis with
execution traces captured from the SoC based target. Optimizing software on multicore systems based on
multi-OS, multi-application and multi-tasking software modules requires in-depth insight to partition code
for the optimal combination of SoC computing resources. The blend of static, dynamic and semantic code
analysis allows SLX to identify modules suited for CPU or FPGA execution, acceleration engine off-load
and exposing parallelization opportunities.

SLX provides application call graphs, memory and cache analysis, detailed variables and memory analysis
dependencies, and communication and synchronization pattern analysis.

ANALYZE

Analyze your software to fully
unders tand your code and
automatically identify further
parallelization opportunities.

Absolute code understanding Meet challenging requirements Faster time to market

OPTIMIZE

Optimize the distribution of your
application for a multi-core system
to achieve the most eff ic ient
utilization of driven by performance,
power, and memory constraints.

INTEGRATE

Implement easy-to-use recipes
and automatically generate
code, instantly improving your
software.

SLX FOR C/C++

PRODUCT BRIEF

© 2017 Silexica, Inc. All Rights Reserved

FIND PARALLELISM
SLX understands the behaviour to give unprecedented insights into the execution behaviour. It weighs
the costs and benefits of software optimization to further exploit the target’s resources. SLX identifies:

System Stability Analysis
SLX gives insights into the stability with a powerful analysis framework, including randomization of

O
PT

IM
IZ

E

scheduling to force different event chains, increasing load on communication channels or processors.
Latency and throughput constraints can be verified automatically for a huge number of different scenarios.

Software Distribution for the System
Sophisticated optimization techniques perform "what-if" analysis to visualize and optimize the software
for the hardware compute blocks on a multicore system. Optimizations are driven by performance, power
and memory requirements for a specific code base given a combination of CPUs, DSPs, FPGAs, GPUs.

Parallelism Detection
A pattern-based framework identifies missed parallelism in the code that can be exploited to allow for code
refactoring to partition modules for execution on a multicore system. Different levels of parallelism are
supported including task, pipeline and data level parallelism.

IN
TE

G
RA

TE

Guide and Rewrite
SLX helps users migrate their existing application either by offering
powerful hints to help users rewrite code, or the source-to-source
technology can rewrite code automatically by inserting pragmas for
existing shared memory APIs, such as OpenMP 4.5, or customized
internal workflows.

Silexica’s unique source-to-source compiler technology allows a
developer to significantly increase the turn-around time for software
changes and his productivity level. Tying results to source code lines and
variables during the Analyze and Optimize phases enables source-to-
source automatic rewriting and ensures the feedback to users is accurate
and comprehensive.

THE SILEXICA SOLUTION
SLX gives you absolute code understanding to meet the most challenging
multicore system requirements.

Automatic and User-
Annotated Weighting

Dlp, Tlp, Plp
Extraction

Target SpecificIdentification of
Blocking Dependencies

And Control

Clear suggestions to
spend less time during

multicore migration

Mapping dependent
code generation

for multicores

Automatic insertion
of pragmas

 (OpenMP, HLS, etc.)

AUTOSAR support

© 2018 Silexica GmbH. All rights reserved worldwide.

